Application of Cortical Learning Algorithms to Movement Classification
نویسندگان
چکیده
منابع مشابه
Genetic Algorithms for Automatic Object Movement Classification
This paper presents an integrated approach, combining a state-of-the-art commercial object detection system and genetic algorithms (GA)-based learning for automatic object classification. Specifically, the approach is based on applying weighted nearest neighbor classification to feature vectors extracted from the detected objects, where the weights are evolved due to GA-based learning. Our resu...
متن کاملNew Classification of Focal Cortical Dysplasia: Application to Practical Diagnosis
BACKGROUND AND PURPOSE Malformation of cortical development (MCD) is a well-known cause of drug-resistant epilepsy and focal cortical dysplasia (FCD) is the most common neuropathological finding in surgical specimens from drug-resistant epilepsy patients. Palmini's classification proposed in 2004 is now widely used to categorize FCD. Recently, however, Blumcke et al. recommended a new system fo...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملComparing Supervised Classification Learning Algorithms
Dietterich (1998) reviews five statistical tests and proposes the 5 × 2 cv t test for determining whether there is a significant difference between the error rates of two classifiers. In our experiments, we noticed that the 5× 2 cv t test result may vary depending on factors that should not affect the test, and we propose a variant, the combined 5×2 cv F test, that combines multiple statistics ...
متن کاملSpectral Forests: Learning of Surface Data, Application to Cortical Parcellation
This paper presents a new method for classifying surface data via spectral representations of shapes. Our approach benefits classification problems that involve data living on surfaces, such as in cortical parcellation. For instance, current methods for labeling cortical points into surface parcels often involve a slow mesh deformation toward pre-labeled atlases, requiring as much as 4 hours wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications Technology and Research
سال: 2019
ISSN: 2319-8656
DOI: 10.7753/ijcatr0803.1002